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Abstract
The energy of a perfectly conducting rectangular cavity is studied by making
use of piston interactions. The exact solution for a 3D perfectly conducting
piston with an arbitrary cross section is discussed.

PACS numbers: 12.20.−m, 03.70.+k

1. Introduction

The Casimir effect [1] was studied in various specific cases and geometries [2, 3]. A new
geometry that recently attracted attention in the theory of the Casimir effect is the piston
geometry.

A piston plate is perpendicular to the walls of a semi-infinite cylinder and moves freely
inside it, this geometry was first investigated in a 2D Dirichlet model [4].

An exact solution for a perfectly conducting square piston at zero temperature was found
in a 3D model in the electromagnetic and scalar cases [5] by making use of a geometric
optics approach; the limit of short distances between the piston and the base of a cylinder
was found in [5, 6] for an arbitrary cross section of a piston; rectangular geometries and finite
temperatures were considered in [6].

In this paper and our previous related papers [7–9] we considered a slightly different
geometry—two piston plates inside an infinite cylinder, which yielded the same results for
rectangular pistons as in the case of a semi-infinite cylinder due to perfectly conducting
boundary conditions. In [7–9] an exact solution for arbitrary cross sections and arbitrary
distances between piston plates was found at zero and finite temperatures in the electromagnetic
3D case. Rectangular and circular cross sections are special cases of our general solution.

A dilute circular piston and cylinder were studied perturbatively in [10]. In this case the
force on two plates inside a cylinder and the force in a piston geometry differ essentially. The
force in a piston geometry can change sign in this approximation for thin enough walls of
the material.
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Different examples of pistons in a scalar case were investigated in [11–13].
The case when the piston’s cross section differs from that of a cylinder was recently

studied numerically [14] and by means of a geometric optics approach [15].
Throughout this paper, we study the Casimir energies of an electromagnetic field with

perfectly conducting boundary conditions imposed. First we study the energy of a rectangular
cavity by making use of piston interactions. Then we generalize the formulae for the case of
a 3D piston with an arbitrary cross section and consider several special and limiting cases.
Our formulae can be applied in every case when the two-dimensional Dirichlet and Neumann
boundary problems for Helmholtz equation can be solved analytically or numerically. The
formulae of section 2 (9)–(12), (14) and (15) are new. The formulae of section 2 (8), (13) were
derived in author’s lectures [7] and have not been published before, the formulae of section 3
were derived by the author [7–9], mathematical details can be found in [8, 9]. The central new
result of this paper is the formula (15).

We take h̄ = c = 1.

2. Construction of a rectangular cavity

The Casimir energy can be regularized as follows:

E = 1

2

∑
ωl

ω−s
l , (1)

where s is large enough to make (1) convergent. Then it should be continued analytically
(1) to the value s = −1, this procedure yields the renormalized finite Casimir energy. The
regularized electromagnetic Casimir energy for the rectangular cavity Ecavity(a, b, c, s) can be
written in terms of Epstein Z3

(
1
a
, 1

b
, 1

c
; s

)
and Riemann ζR(s) zeta functions [2]
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The prime means that the term with all ni = 0 should be excluded from the sum. The reflection
formulae for an analytical continuation of zeta functions exist
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The renormalized Casimir energy for a perfectly conducting rectangular cavity can
therefore be written as [16]

Ecavity(a, b, c) = − abc

16π2
Z3(a, b, c; 4) +

π

48

(
1
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+

1

b
+

1

c

)
. (7)
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Figure 1. Construction of a cavity.

(This figure is in colour only in the electronic version)

The expression (7) can be rewritten in a different mathematical form [7]

Ecavity(a, b, c) = π

48a
+

π

48b
+

π
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+
1

4
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. (8)

Here the Casimir energy for a unit length of a rectangular waveguide is (t = b/c or t = c/b)

Ewaveguide(b, c) = Ewaveguide(c, b)

= − π2

720t2bc
+

t

4πbc

+∞∑
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+
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)
. (9)

Let us discuss different terms appearing in (8) and thus clarify the physical meaning of a
zeta function regularization in this case.

Imagine that a piston is large in two dimensions with sides a0 and c0 (plates 1 and 2 in
figure 1). In this case the contribution to the energy in this geometry is given by the Casimir
result for two parallel plates with the surface area a0c0 and the edge term π/48b

−π2a0c0

720b3
+

π

48b
, (10)

where one of the terms in a0Ewaveguide(b, c0) (t = b/c0) is taken into account.
The next step is to move other pistons (plates 3 and 4 in figure 1) that have a large side a0

between these already existing parallel plates. The energy change is equal to

a0E3−4(b, c) +
π

48c
, (11)

where

E3−4(b, c) = − 1

bc

+∞∑
n=1

(
csc2(nπ/t)

16n2
+

t coth(nπ/t)

16πn3

)
. (12)

In (11) another term in a0Ewaveguide(b, c) was taken into account (c is a distance between the
two piston plates 3 and 4, t = b/c = c/b). From the energy change (11) it is straightforward
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to obtain the force on the piston plates 3 and 4, and in the limit a0 → ∞ one immediately
obtains the exact force on a unit length of stripes 3 and 4 from E3−4(b, c).

The expression for the energy change (10) is valid only when b is much smaller than the
sizes of the plates 1, 2, and (11) is valid when c is much smaller than a0 and of the order b or
less.

Some comments are needed to clarify the meaning of the terms π/48b + π/48c in the
energy expression (8). These terms appear due to edges of the piston. They are precisely
equal to next to leading order terms in the expansion (26), which means that they account for
four rectangular edges (χ = 1/4) of the finite piston in two different expansions (for small b
and small c).

The next possible step is to insert pistons 5 and 6 from the opposite sides of the existing
waveguide with sides b and c and move them towards each other. The term [7]

E5−6(a, b, c) = 1

4

+∞ ′∑
n2,n3=−∞

∫ +∞

−∞

dp

2π
ln

(
1 − exp

[
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√(
πn2

b

)2

+

(
πn3

c

)2

+ p2

])
(13)

yields the interaction energy of two plates distance a apart inside an infinite rectangular cylinder
with sides b and c (the term n2 = n3 = 0 is excluded from the sum due to a cancellation with
the term π/(48a) in (8)). The force on the pistons 5 and 6 is straightforward.

In summary, the expression

�E = Ecavity(a, b, c) − π

48b
− π

48c
+

ac

a0c0

π

48b
+

a

a0

π

48c
(14)

yields the energy change inside a cavity volume with sides (a, b, c) during a construction of
the following system:

Step 1. pistons 1 and 2 are being moved inside a waveguide with large sides a0, c0 from a
large distance between them towards each other until the distance b between them is achieved.
For a validity of the energy change (10) it is necessary to assume b � a0, b � c0 (note
that in (14) we consider the energy change inside the volume with sides (a, b, c), which is
inside the volume (a0, b, c0); its energy is ac/a0c0 times less than the energy of the volume
(a0, b, c0)—this is why the expression (10) is multiplied by a factor ac/a0c0 in (14)).

Step 2. pistons 3 and 4 with sides a0, b are being moved inside the existing box (a0, b, c0)

between the existing pistons 1 and 2 towards each other until the distance c between them
is achieved. For a validity of the energy change (11) it is necessary to assume c � a0, also
c � c0.

Step 3. pistons 5 and 6 with sides b, c are being moved inside the existing box (a0, b, c) towards
each other until the distance a between them is achieved. It is assumed here that a � a0.
However, the formula (13) itself is exact for arbitrary values of a in the limit a0 → ∞, i.e. for
plates inside an infinite waveguide.

During each step the energy in the system decreases, so the force between moving pistons
is always attractive.

In the limit of infinite plates 1, 2 and stripes 3, 4 (a0, c0 → ∞) the total energy change
(steps 1–3) inside the cavity volume with sides (a, b, c) can be written in the form

�Etot = − abc

16π2
Z3(a, b, c; 4) +

π

48a
. (15)

The Casimir energy of the cavity (15) depends on the process of its construction, it is not
symmetrical in a, b, c as was generally thought before (compare (7) and (15)). This is the
central result of our paper.
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Figure 2. Two plates inside an infinite cylinder.

3. Arbitrary cross section results

Suppose there are two plates inside an infinite cylinder of an arbitrary cross section M
(figure 2). To calculate the force on each plate imagine that four parallel plates are inserted
inside an infinite cylinder and then two exterior plates are moved to spatial infinity. This
situation is exactly equivalent to three perfectly conducting cavities touching each other.
From the energy of this system one has to subtract the Casimir energy of an infinite cylinder
without plates inside it. Doing so we obtain the energy of interaction between the interior
parallel plates and the attractive force on each interior plate inside the cylinder [7–9]

E(a) =
∑
ωwave

1

2
ln(1 − exp(−2aωwave)) (16)

F(a) = −∂E(a)

∂a
, (17)

the sum here is over all T E and T M eigenfrequencies ωwave for a cylinder with the cross
section M and an infinite length.

In fact, the Casimir energy of our electromagnetic system is proportional to the sum of
free energies for two boson scalar fields (with Dirichlet and Neumann boundary conditions
imposed at the boundary of an infinite cylinder with a cross section M and zero Neumann
eigenvalue excluded) at finite temperature T = 1/β if we make a substitution a → β/2. Free
energies have a well-defined finite part, their sum up to a factor 1/a coincides with (16).

One can rewrite (16) in a different form [9, 17]

E(a) = − 1

2π

+∞∑
l=1

(∑
λkD

λkDK1(2lλkDa)

l
+

∑
λiN

λiNK1(2lλiNa)

l

)
. (18)

Here K1 is a modified Bessel function and

�(2)fk(x, y) = −λ2
kDfk(x, y) fk(x, y)|∂M = 0 (19)

�(2)gi(x, y) = −λ2
iNgi(x, y)

∂gi(x, y)

∂n

∣∣∣∣
∂M

= 0. (20)

Our results are exact for an arbitrary curved geometry of a cylinder.
For a rectangular cylinder with sides b and c the exact Casimir energy of two plates inside

it can be written as [9]

Erect(a) = −
+∞∑
l=1

+∞ ′∑
m,n=−∞

√
m2/b2 + n2/c2

4l
K1(2lπa

√
m2/b2 + n2/c2). (21)

The term m = n = 0 is omitted in the sum.
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For a circular cylinder the eigenvalues of the two-dimensional Helmholtz equation
λkD, λiN are determined by the roots of Bessel functions and derivatives of Bessel functions.
The exact Casimir energy of two circular plates of radius b separated by a distance a inside an
infinite circular cylinder of radius b is given by [9]

Ecirc(a) = −
+∞∑
l=1

+∞∑
ν=0

∑
j

1

2πb

µDνjK1(2lµDνja/b) + µNνjK1(2lµNνja/b)

l
,

Jν(µDνj ) = 0, J ′
ν(µNνj ) = 0.

(22)

The sum is over positive µDνj and µNνj .
The leading asymptotic behaviour of E(a) for long distances λ1Da � 1, λ1Na � 1 is

determined by the lowest positive eigenvalues of the two-dimensional Dirichlet and Neumann
problems λ1D, λ1N

E(a)|λ1Da�1, λ1Na�1 ∼ − 1

4
√

πa

(√
λ1D e−2λ1Da +

√
λ1N e−2λ1N a

)
, (23)

so the Casimir force between the two plates in a cylinder is exponentially small for long
distances. This important property of the solution is due to the gap in the frequency spectrum
or, in other words, it is due to the finite size of the cross section of the cylinder. Due to
this property one needs a finite number of the eigenvalues of the Helmholtz equation for 2D

Dirichlet and Neumann boundary problems (19)–(20) to obtain the Casimir energy at a specific
distance a between the plates with a desired accuracy.

The free energy at a temperature T = 1/β describing the interaction of two parallel
perfectly conducting plates inside an infinite perfectly conducting cylinder with the cross
section M has the form [7–9]

F(a, β) = 1

β

∑
λkD

+∞∑
m=−∞

1

2
ln

(
1 − exp

(−2a

√
λ2

kD + p2
m

))

+
1

β

∑
λiN

+∞∑
m=−∞

1

2
ln

(
1 − exp

(−2a

√
λ2

iN + p2
m

))
. (24)

Note that λiN �= 0. We used the standard notation pm = 2πmT .
In the long distance limit a � β/(4π) one has to keep only m = 0 term in (24). Thus

the free energy of the plates inside a cylinder in the high temperature limit is equal to [8]

F(a, β)|a�β/(4π) = 1

2β

∑
λkD

ln

(
1 − exp(−2aλkD)

)
+

1

2β

∑
λiN

ln

(
1 − exp(−2aλiN)

)
.

(25)

One can check that the limit λ1Da � 1, λ1Na � 1 in (25) immediately yields the known high
temperature result for two parallel perfectly conducting plates separated by a distance a [18].

For a � β/(4π) and λ1Da � 1, λ1Na � 1 one can use the heat kernel expansion
[19, 20] and properties of the zeta function [21–23] to obtain the leading terms for the free
energy [9]

F(a, β)|a�β/(4π), λ1Da�1, λ1Na�1 = −ζR(4)

8π2

S

a3
+

ζR(2)

4πa
(1 − 2χ) + O(1), (26)

where

χ =
∑

i

1

24

(
π

αi

− αi

π

)
+

∑
j

1

12π

∫
γj

Laa(γj ) dγj . (27)
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Here S is an area of the cross section M,αi is the interior angle of each sharp corner at the
boundary ∂M and Laa(γj ) is the curvature of each boundary smooth section described by the
curve γj . The force calculated from (26) coincides with the zero temperature force FC in [5],
(equation 7).

Acknowledgments

It is a pleasure to thank Michael Bordag for hospitality in Leipzig during QFEXT-07, also all
colleagues for fruitful discussions in Leipzig. This work has been supported by a CNRS grant
ANR-06-NANO-062 and grants RNP 2.1.1.1112, SS .5538.2006.2, RFBR 07-01-00692-a.

References

[1] Casimir H B G 1948 Proc. K. Ned. Akad. Wet. 51 793
[2] Bordag M, Mohideen U and Mostepanenko V M 2001 Phys. Rep. 353 1
[3] Nesterenko V V, Lambiase G and Scarpetta G 2004 Riv. Nuovo Cimento 27 (6) 1

Milton K A 2004 J. Phys. A: Math. Gen. 37 R209
Lambrecht A, Maia Neto P A and Reynaud S 2006 New J. Phys. 8 243

[4] Cavalcanti R M 2004 Phys. Rev. D 72 065015
[5] Hertzberg M P, Jaffe R L, Kardar M and Scardicchio A 2005 Phys. Rev. Lett. 95 250402
[6] Hertzberg M P, Jaffe R L, Kardar M and Scardicchio A 2007 Casimir forces in a piston geometry at zero and

finite temperature Preprint 0705.0139 [quant-ph]
[7] Marachevsky V N 2005 One loop boundary effects: techniques and applications Preprint hep-th/0512221
[8] Marachevsky V N 2006 Casimir energy of two plates inside a cylinder Proc. 14th Int. Sem. High Energy Phys.

QUARKS-2006 (St. Petersburg, Russia, 19–25 May 2006) Preprint hep-th/0609116
[9] Marachevsky V N 2007 Phys. Rev. D 75 085019

[10] Barton G 2006 Phys. Rev. D 73 065018
[11] Fulling S A and Wilson J H 2007 Phys. Rev. A 76 012118
[12] Edery A 2006 J. Phys. A: Math. Gen. 39 685

Edery A 2007 Phys. Rev. D 75 105012
Edery A and MacDonald I 2007 J. High Energy Phys. JHEP09(2007)005

[13] Zhai X-h and Li X-z 2006 Casimir pistons with hybrid boundary conditions Preprint hep-th/0612155
[14] Rodriguez A, Ibanescu M, Ianuzzi D, Capasso F, Joannopoulos J D and Johnson S G 2007 Phys. Rev. Lett.

99 80401
[15] Zaheer S, Rodriguez A W, Johnson S G and Jaffe R L 2007 Optical-approximation analysis of sidewall-spacing

effects on the force between two squares with parallel sidewalls Preprint 0709.0699 [quant-ph]
[16] Lukosz W 1971 Physica (Amsterdam) 56 109
[17] Nesterenko V V and Pirozhenko I G 1997 J. Math. Phys. 38 6265
[18] Sauer F 1962 PhD Thesis (Gottingen)

Brevik I, Ellingsen S A and Milton K A 2006 New J. Phys. 8 236
[19] Vassilevich D V 2003 Phys. Rep. 388 279
[20] Gilkey P B 1994 Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem (Boca Raton, FL:

CRC Press)
[21] Kirsten K 2002 Spectral Functions in Mathematics and Physics (Boca Raton, FL: CRC Press)
[22] Santangelo E M 2001 Teor. Mat. Fiz. 131 98 (Preprint hep-th/0104025)

Santangelo E M 2002 Theor. Math. Phys. 131 527 (Engl. Transl.)
[23] Elizalde E, Odintsov S D, Romeo A, Bytsenko A and Zerbini S 1994 Zeta Regularization with Applications

(Singapore: World Scientific)

7

http://dx.doi.org/10.1016/S0370-1573(01)00015-1
http://dx.doi.org/10.1393/ncr/i2005-10002-2
http://dx.doi.org/10.1088/0305-4470/37/38/R01
http://dx.doi.org/10.1088/1367-2630/8/10/243
http://dx.doi.org/10.1103/PhysRevD.69.065015
http://dx.doi.org/10.1103/PhysRevLett.95.250402
http://www.arxiv.org/abs/0705.0139 ignorespaces [quant-ph]
http://www.arxiv.org/abs/hep-th/0512221
http://www.arxiv.org/abs/hep-th/0609116
http://dx.doi.org/10.1103/PhysRevD.75.085019
http://dx.doi.org/10.1103/PhysRevD.73.065018
http://dx.doi.org/10.1103/PhysRevA.76.012118
http://dx.doi.org/10.1088/0305-4470/39/3/017
http://dx.doi.org/10.1103/PhysRevD.75.105012
http://dx.doi.org/10.1088/1126-6708/2007/09/005
http://www.arxiv.org/abs/hep-th/0612155
http://dx.doi.org/10.1103/PhysRevLett.99.080401
http://www.arxiv.org/abs/0709.0699 ignorespaces [quant-ph]
http://dx.doi.org/10.1016/0031-8914(71)90009-7
http://dx.doi.org/10.1063/1.532211
http://dx.doi.org/10.1088/1367-2630/8/10/236
http://dx.doi.org/10.1016/j.physrep.2003.09.002
http://www.arxiv.org/abs/hep-th/0104025
http://dx.doi.org/10.1023/A:1015157820346

	1. Introduction
	2. Construction of a rectangular cavity
	3. Arbitrary cross section results
	Acknowledgments
	References

